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Regular Ternary Logic Functions— Ternary Logic
Functions Suitable for Treating Ambiguity

MASAO MUKAIDONO

Abstract — A special group of ternary functions, called regular ternary
logic functions, are defined. These functions are useful in switching theory,
programming languages, algorithm theory, and many other fields — if we
are concerned with the indefinite state in such fields. This correspondence
describes the fundamental properties and representations of the regular
ternary logic functions.

Index Terms — Ambiguity, canonical disjunctive form, detecting haz-
ards, fail-safe logic, functional completeness, indefinite state, Kleene alge-
bra, regular ternary logic function, ternary function.

1. INTRODUCTION

Logics and algorithms are generally based on the two-valued
principle, that is, true or false, or yes or no. However, in some
cases, we experience a state in which it is impossible or unnecessary
to decide true or false. For example, each value of a signal in a logic
circuit, which takes 0 or 1 in a steady state, changes from 0 to 1 or
from 1 to O in a transient state; that is, it is impossible to decide

“ether the value is 0 or 1. The initial states of sequential circuits
- another example where it is difficult to know whether the value
is 0 or 1 in many cases. Furthermore, it may be said that an algorithm
does not stop for a given data, or that some data are not applicable
to the algorithm. In the cases mentioned above, we may use ternary
logic (three-valued logic), instead of binary logic (two-valued logic),
in which the third truth value is introduced to represent an ambigu-
ous state apart from true and false.

On the other hand, ternary functions have been studied for some
time from the standpoint of their functional completeness or repre-
sentation. When applying ternary functions to various fields of
engineering, we seldom use all the ternary functions; instead, we
employ only some subsets, which have special properties or mean-
ings. In fact, Mukaidono (1] has introduced some special subsets of

ternary functions called regular, normal, and uniform, respectively,:

which have important and useful properties.

This correspondence discusses in detail a special group of ternary
functions, called regular ternary logic functions and introduced
firstly in Mukaidono [1], which are significant if the third truth
value is considered to represent an ambiguous state. That is, regular
ternary logic functions, which will be studied in this correspondence,
are suitable for treating ambiguity. In Section II, we shall introduce
regular ternary logic functions from three different standpoints and

ow that they are all the same definitions. A representation of regu-

~1ar ternary logic functions is discussed in Section III, and their

axioms and functional completeness are explained in Section IV.
Finally, in Section V, the canonical form, which is determined
uniquely for any given regular ternary logic function, is studied.

II. REGULAR TERNARY LOGIC FUNCTIONS

A ternary function is defined as follows, using the symbol 1/2 as
the third truth value in contrast to 0 (false) and 1 (true): Letting
V = {0,1/2, 1}, a n variable ternary function F is defined to be a
mapping from V" to V:

F:V'—> V.

Here, we will interpret the truth value 1/2 as “uncertain O or 1,” that
is, “ambiguous.” Then, we can define the truth tables of logic
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connectives AND(+), OR(+), and NOT(™ ) as in Table I. Also, let us
consider the ternary functions defined by the following condition:

Condition 1: the ternary functions which can be represented by
well-formed logic formulas consisting of variables x,, - - - .x,, con-
stants 0, 1/2, 1, and logic connectives AND(-), OR(+), and NOT(™ )
defined in Table 1.

Hereafter, we call a ternary function satisfying the above condi-
tion a ternary function representable by a logic formula.

Note 1: The truth tables of Table I are called Kleene's ternary
logic system {2]. The same truth tables as Table  were used indepen-
dently by Goto [3] to analyze indefinite behaviors of relay circuits.

Here, let us define a partial ordered relation “x” concerning
ambiguity on V = {0,1/2, 1} and V" as follows:

Definition 1: 0 < 1/2,1 « 1/2,i «< i,i € V. In the relation x,
0 and 1 are not comparable to each other. The relation can be
extended among V" as follows: For two elements A=(a,.- - -, a,)
and A’ = (ai,---,a,)of V', A’ « A if and only if a/ = a, for all
values of i. If A’ « A, then A’ is said to be less ambiguous than or
equal to A.

Example 1: Suppose A, = (0,1/2,1/2), A, = (1,1/2.0). and
A = (1/2,1/2,1/2); then A, = A;, A> < A; where A, and A, are
not comparable to each other.

As a condition for a ternary function F to be significant when the
truth value 1/2 is assumed to be represent an ambiguous state. it will
be postulated that if the value of F(A) is definite, thatis. O or 1. then
F(A’) takes an equal value for every element A’ which is less
ambiguous than or equal to A; that is,

Condition 2: Regularlty 1f F(AY € B ={0,1}; then F(A"' ) =
F(A) forevery A’ suchas A’ x A.

Definition 2: A ternary function F is called a regular ternary
logic function if and only if F satisfies the regularity Condition 2.

Example 2: Let the two-variable ternary functions F; and F> be
given by Table II. Then F| is a regular ternary logic function while-
F, is not. In fact, (1,1) = (1/2,1), but Fo(1,1) =1 #0 =
Fy(1/2,1).

Note 2: The condition of regularity defined above is an exten-
sion of Kleene’s definition to n variable ternary functions where
Kleene’s original definition {2] of regularity for a truth table is as
follows: The truth table never takes 0 or 1 as entry in the ~1/2 row
(or column)” unless this entry 0 or 1 occurs uniformally throughout
its entire column (or row, respectively).

Next, a ternary function which satisfies the following condition.

Condition 3: Monotonicity for ambiguity: If A’ x A, then
F(A') < F(A), is called an A ternary logic function. It is known [4]
that A ternary logic functions can be applied to design fail-safe logic
circuits by letting 1/2 correspond to a failure state.

Note 3: A ternary function F which satisfies the above condi-
tion and, also, the condition of normality [1], that is, if A € B” =
{0, 1}", then F(A) € B is called a B ternary logic function [3] and
is applied to detecting hazards [6], (7] and fail-safe logic {8].

Thus far, three different conditions (1, 2, and 3) have been de-
fined for ternary functions. In the following, we will prove that
these three conditions are equivalent to each other.
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Theorem 1: F is a regular ternary logic function if and only if F
is a A ternary logic function.

Proof: Let us suppose that if F(A) € B, then F(A) = F(A")
forevery A’ suchthat A’ o« A. If F(A) = 1/2, then itis evident that
F(A')Y x F(A) = 1/2 holds for every A'. If F(A) € B, then
F(A') < F(A) holds for every A’ such that A’ * A by the sup-
position. That is, it is always valid that if A’ = A then F(A')
F(A). Conversely, let us suppose that if A’ @ A, then F(A") = F(A).
If F(A) € B, then F(A") « F(A) implies F(A') = F(A).

Q.E.D.
Theorem 2: If F is a ternary function representable by a logic
formula, then F is a regular ternary logic function.

Proof: 1t will be shown by induction concerning the number of
logic connectives. It is evident that the constants 0, 1/2, and 1, and
each variable x;, * - -, x,, satisfy Condition 3. Suppose that all ter-
nary functions representable by logic formulas in which the number
of logic connectives is smaller than or equal to n, satisfy
Condition 3. Next, let us suppose that F is a ternary function repre-
sentable by a logic formula in which the number of logic connectives
isn + 1. Hereafter, for simplicity, we will identify a logic formula
with the ternary function represented by the formula. F is one of F,,
F, - Fand F, + F,. F, satisfies Condition 3 because of the fact that
Fi(A") @ Fi(A) is equal to Fi(A') = F,(A). Suppose that A' = A
and (Fy - F2)(A') # (F, - F2)(A). Then, this fact leads to one of
D(F - F))(A) =0 and (F; - F2)(A") # 0, 2) (Fi - F2)(A) = 1
and (F, - F2)(A') # 1. Either case does not hold as shown below. If
(Fi - F2)(A) = 0,then Fi(A) = Qor F,(A) = 0. By the assumption
of deduction, we can obtain that Fi(A") = Qor F(A’) = 0, that is
(F, - F3)(A") = 0. This contradicts the assumption. It is similar in
the case of 2). Therefore, F, - F, satisfies Condition 3. Next, sup-
pose that A’ = A and (F; + Fy)(A") ¢ (F, + F2)(A). In a similar
manner, we can show that F; + F; satisfies Condition 3, because
(Fy + F;)(A) = 0 and (F, + F5)(A) = 1 lead to a contradiction.
From the above, it has been shown that all ternary functions repre-
sentable by logic formulas satisfy Condition 3. Q.E.D.

The converse of Theorem 2, that is, every regular ternary logic
function can be represented by a logic formula, will be shown in the
next section. '

I11. REPRESENTATION OF A REGULAR TERNARY LOGIC FUNCTION

A literal is a variable x; or x;, the negation of x,. A conjunction
of one or more literals is called a simple phrase if it does not contain
a literal and its negation x; - X; simultaneously for at least one vari-
able x;, and is called a complementary phrase otherwise. A dis-
junction of one or more literals is called a simple clause if it does
not contain a literal and its negation x; + X; simultaneously for at
least one variable x;, and is called a complementary clause other-
wise. In the above definitions, it is assumed that any repeated
literals are removed. '

Note 4: As evident from Table I, x; X, = Oandx, + x; = 1
whenx = 1/2 does not hold in Kleene’s system. Therefore, we can
not ignore conjunctions and disjunctions containing a literal and its
negation simultaneously.

Definition 3: Let A = (a\," - ,a,) be an element of V", Then
A and a simple phrase & = x{l - - - xun (simple clause 8 = x71 +
++- + xzn) correspond to each other if the following conditions
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hold: If a; = 0, then x% = X; (x{i = x;); if a, = 1, then x{i = x;
(x% = X;); and if a; = 1/2, then there is no variable x; in a(B).

Example 3: LetA = (1,1/2,0). Then, the simple phrase a cor-
responding to A is @ = x; * X3, and the simple clause B correspond-
ingto A is B =X, + x3.

Definition 4: Let A = (a,,***,a,) and A’ = (a,, - -,a,) be
any two elements of V", Then, it is said that A and A’ are disjoint
to each other and written as A N A’ = @ if thereisi in{1,---,n}
such that @, is O or 1 and a; = a;.

Lemma I: Let A be any element of V" and a, 8 be the corre-
sponding simple phrase and simple clause, respectively. Then,

DA xAiffa(d’) =1,

DA NA=@iffa(A’) = 0;

NA ¢AandA' NA #@iff a(A’) = 1/2;

4) A xAiIff BA') = 0;

SYA'NA=0iff B(A") =1, and

6) A'fAandA' NA # Qiff BA') = 1/2.

Proof: Let A = (as,"*-,a,) and a = x{'- - xiik where
a;(j = 1,-++,k)is 0 or 1 and other elements of A are 1/2. For an
element A’ = (a;,-*-,a,), a(A') = 1 if and only if the value of
x3ij [thatis, (a;)?j]is 1 for all j’s (1 =< j = k). This means that if
a;isOorl,thena; = ay, thatis,A’ = A. Therefore, 1) is justified.
Similarly, @(A’) = O if and only if there is at least one j such that
a; = aj;, thatis, A’ N A = @. Thus, we arrive at 2). Also, 3) is
derived directly from 1) and 2). In a similar manner, we can show
4), 5), and 6). Q.E.D.

Theorem 3: Let F be aregular ternary logic function and A be an
element of V". Then,

1) if F(A) = 1, then F(A

2) if F(A) = 0, then F(A

and

3) if F(A) = 1/2, then F(A') = 1/2 for every A’ such that
AxA’,

Proof: These are evident from the condition of regularity
(Condition 2) and monotonicity for ambiguity (Condition 3).

Q.E.D.

Let F be an n variable regular ternary logic function. Then,
F~'(1), F~%(0), and F ~'(1/2) represent the subsets of V" mapped to
1, 0, and 1/2, and are called the 1 set, O set, and 1/2 set, respec-
tively. Theorem 3 indicates that F ~'(1), F ~'(0) and F ~'(1/2) are
partial ordered sets in regard to the relation = and that the sets
F~'(1) and F ~'(0) are determined uniquely by their maximal ele-
ments while F~'(1/2) is determined uniquely by its minimal ele-
ments (Fig. 1). Hereof course, F /(1) U F7'(Q) U F7'(1/2) = V"
holds. In Fig. 1, the symbol * indicates the maximal elements of
the 1 set, the symbol # the maximal elements of the O set, and the
symbol x the minimal elements of the 1/2 set.

Theorem 4: Any regular ternary logic function F can be repre-
sented by the logic formula

1 for every A’ such that A’ = A;

I) =
"y = 0 forevery A" such that A’ =« A;

F=F"+(/2)-F°

where F' is the disjunction of simple phrases corresponding to all
the maximal élements of the 1 set of F and where F° is the conjunc-
tion of simple clauses corresponding to all the maximal elements of
the 0 set of F.

Proof: Let A' be any element of V" and F(A') = 1. Then,
there is a maximal element A in 1 set of F such that A’ « A. Hence,
there is a simple phrase a corresponding to A in F' where
a(A') = 1 [Lemma 1-1]. Therefore, F'(4’) = 1, that is, (F' +
(1/2)y - F®)(A") = 1. Next, suppose F(A') = 1/2. Then, A’ does
not belong to either the 1 set or the O set of F. Hence, there is no
simple phrase in F' and no simple clause in F° corresponding to A
such that A’ x A. As a result, F'(A’) # 1 and F®(A') # 0
[Lemma 1-1 and 4]. F°(A’) # 0 means that F®(A’') =1 or
F°A'Y = 1/2. Thus, we can show that (F' + (1/2)- F)(4") =
1/2. Finally, suppose that F(A') = 0. Then, there is a simple
clause corresponding to A such that A’ x A in F . Therefore,
F%A') = 0 holds Lemma 1-4. On the other hand, A' N A = is
valid for every element A of the | set of F because A’ belongs to the
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(1/2,---,1/2)

Flay2)

11/2-set
4
Fn: 1-/set\,(
: Q-set
Fig. 1. V'=F (1)U F'(Q) U F~'(1/2).

0 set. That is, F'(A’) = 0 is justified by Lemma 1-2. From the
above, we have (F' + (1/2) - F% (") = 0. Q.E.D.

As we have seen, the three conditions (1, 2, and 3) described in
the preceding section are equivalent to each other. It is apparent
from the above proof that F' and F° are determined uniquely (ignor-

‘g the order of phrases or clauses) for any given regular ternary
wvgic function F. Therefore, the logic formula described in
Theorem 4 can be used as a canonical form of regular ternary logic
functions. In Section V, we will consider another canonical form
called the canonical disjunctive form.

Example 4: Let us represent F, of Table II in Example 2 by a
logic formula based on the above theorem. The set of maximal
elements of the 1 set is {(0, 1/2)} and that of the O set is {(1, 0)}.
Therefore, we have F; = X, + (1/2) * (x; + xo).

IV. AXIoMs AND FUNCTIONAL COMPLETENESS
OF REGULAR TERNARY LOGIC FUNCTIONS

Any regular ternary logic function can be represented by a logic
formula composed of constants 0, 1/2, and 1, and logic connectives
AND(*), OR(+) and NOT(" ) defined by Table I. As an algebraic
system, the set of regular ternary logic functions satisfies the follow-
ing equalities which also hold in Boolean algebra:

1) the commutative laws A + B =B + A, A-B =B - A;

2) the associative laws A + (B + C)=(A +B) + C, A -
B-C)=@A-B)'C;

3) the absorption laws A + (A -B)=A, A-(A + B) = A,

4) the distributive laws A (B + C) = (A *B) + (A * C),
A+BC)=A+8B)'(A+C)

5) the idempotent laws A + A = A, A - A =4,

6) De Morgan’s laws (A +B)=A ‘B, (A-B)=4 + B;
7) the double negation law A = A4;

8) the least element0 + A = A, 0-4 = 0;

9) the greatest element 1 + 4 = 1,14 = A;

10) Kleene's laws (A*A)+ B +B =B + B, A -4 -

(B +B)=A"-4;and

11) center 1/2 = 1/2.

Except (the complementary laws)4 + A = 1,A -4 = 0.

The equalities 1-10 except 11 are equivalent to axioms of Kleene
algebra or fuzzy algebra and have been studied in detail in [9]. The
element satisfying 11 is called a center. The regular ternary logic
functions satisfy the axioms of Kleene (or fuzzy) algebra with
a center.

Next, we will examine these regular ternary logic functions from
a standpoint of functional completeness. The set of logic connec-
tives {0, 1/2,1, +,-,7,} (we consider constants as 0 variable logic
connectives) cannot represent all ternary functions; that is, it is not
functionally complete for ternary functions, but as mentioned
above, it is functionally complete in a strong sense [1] for regular
ternary logic functions. That is, any regular ternary logic function
can be represented by {0, 1/2, 1, +,-, 7 }; and conversely, a ternary
function represented by {0, 1/2, 1, +,+, ™ } is always regular.
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Let us define ternary NOR( 1) and NAND( } ) as in Table Il-
Theorem 5: The set of logic connectives {0,1/2, 1} is func-
tionally complete for regular ternary logic functions.
Proof: Itis shownby 4 =4 1A, 1=0,A+B=A18
andA B =4 1 B. Q.E.D.
Theorem 6: The set of logic connectives {0,1/2, |} is func-
tionally complete for regular ternary logic functions.
Proof: ItisshownbyAd =A | A, 1=0,A+B =4 |B
andA B =A | B. Q.E.D.
Note 5: The following problem arises: if a nonregular ternary
logic function is added to the set of regular ternary logic functions,
is the new set always functionally complete for ternary functions?
That is, are regular ternary logic functions maximal? The answer
is negative. In fact, one-variable ternary functions u,,---,ue of
Table IV are nonregular, and even if one of them is added to the
family of regular ternary logic functions, they are not functionally
complete for ternary functions. But it can be proved that if any

" nonregular one-variable ternary function except those of Table IV is

added to the set of regular ternary logic functions, then they are
functionally complete for ternary functions.

V. CANONICAL FORM OF REGULAR TERNARY LOGIC FUNCTIONS

In this section, we shall introduce a canonical form for regular
ternary logic functions, which is different from that of Theorem 4.
We shall also discuss the methods to obtain such a canonical form.
Any logic formula representing a regular ternary logic function F
can be expanded into a disjunctive form

F=y1+:-+9y,

where y,(i = 1,---,m)is aproduct term, because the distributive,
absorption, De Morgan’s, idempotent, and other laws stand valid as
stated in the preceding section. Here, each product term ; is ane of
the following three types:

type 1: -«
type 2: ---(1/2) r «
type 3': -+ 8

where a is a simple phrase and B is a complementary phrase as
described in Section III. If a product term (1/2) - B8 (B is a com-
plementary phrase) exists, then we can omit 1/2 and it is equal to
type 3’ because x; * x; < 1/2 stands always true. If a variable x;
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does not exist in a product term (1/2) + a of type 2', then the
following relation holds:

(1/2) - a = (1/2)'(xi+3i)'0= (1/2)'a'xi+ (1/2)‘01‘;5.‘

as x; + X; = 1/2 is always valid. In a similar manner, if a variable
x; does not exist in a complementary phrase 8 of type 3', then

B=B (xit+x)=B'x+ B X

holds, since there is a factor x; + X; in B for a variable x; where
x;+X; < 1/2 < x; + X; always holds. From the above, we can ex-
pand a of type 2’ and B of type 3’ into disjunctions of product terms
in which all variables exist, respectively. A simple phrase and com-
plementary phrase in which all variables exist are called a minterm
and complementary minterm, respectively.

Consequently, any regular ternary logic function can always be
expanded into the disjunction of the following three types of product
terms:

type 11 a = x§il - - x&ik « - - simple phrase
type 2. (1/2) -2’ = (1/2) » x{1---xin - - - ' is a minterm
type 30 B = x5l xon - xiy %l xi Tk
complementary minterm

where a; or a; is O or 1.

Next, let us examine the relations of each type of product term.
Here, for two product term y and y’, if all literals of y exist in
v’ as well, then it is written as y D y'. In this case, y + y' = v
is true; that is, ¥’ is absorbed by ¥ in accordance with the absorp-
tion law.

Definition 5: Let A = (a,,---,a,) be an element of V". Then,
the element A corresponds to a product term of type 2 or type 3 if
the following relations holds:

ifa, = 0, then x{i = x;
ifa, =1, then x{i = x;
ifa; = 1/2, thenxii = x,"X;.

Example 5: (0,0, 1) corresponds to a product term of type 2,
(1/2) * Xy * X2 * xa, and (0, 1/2, 1) corresponds to that of type 3,
X1 ° X2+ X2 * x3. Product terms of type 2 correspond to elements of
B", ar{ld p;'oduct terms of type 3 to those of V" — B” where

B" = {0.1}".

T Lemma 2: Let @ be a product term of type 1, a’ be that of type 2
or type 3, and A and A’ be elements corresponding to a and a’,
respectively. Then,

) ifa(A’) =1, thena D «’ and

2) a'(A) = 1/2ifand only if A’ = A. »

Proof: It is shown by the definitions of type 1, type 2, type 3
and Definition 5. Q.E.D.

Definition 6: If a regular ternary logic function F is represented

by a logic formula

F ='Y|+ v +-Ym

then it is said that F is in the canonical disjunctive form where
vdi =1,+--,m) is one of type 1, type 2 or type 3 and y; D v, for
alt i, j (i #j).

Theorem 7: Any regular ternary logic function can be repre-
sented uniquely (ignoring the order of the product terms) by the
canonical disjunctive form.

Proof: Let us suppose F;, = y; + -+ + v, and F, =
yi + -+ + v,/ are two different canonical disjunctive forms of a
regular ternary logic function F. (It is evident from the above dis-
cussion that there is at least one canonical disjunctive form of F).
Now, we can suppose that a product term 7 exists in F, but not in
F, without loss of generality. First, assume 7y is a product term of
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type 1, that is, a simple phrase. If A is an element corresponding to
v, then F,(A) = 1 because y(A) = L. Then, it should be
Fi(A) = Fx(A) = 1. Therefore, there is a product term " of type 1
corresponding to A’ such that A < A’ in F; [Lemma 1-1] where by
the assumption y # y', A # A’ holds. Here, y'(4") = 1 leads to
F»(A") = 1 which is equal to F\(4") = 1. Therefore, in a similar
manner, there is a product term y” of type 1 corresponding to A"
such that A’ « A" in F;. Then, y can be absorbed by y" because
AxA”and A # A", thatis, ¥y C ¥". Hence, this is contradictory to .
the assumption that F, is the canonical disjunctive form. Second,
assume 7 is a product term of type 2 or type 3. Letting A be an
element corresponding to 7y, y(A) = 1/2 leads to Fi(A) = 1/2,
because if we assume that Fi(A) = 1, then the following con-
tradiction arises: there should exist a simple phrase ' such that
¥'(A) = 1 in F, and vy is absorbed by v’ [Lemma 2-1]. Hence,
F2(A) = 1/2 holds. This means that there is a product term y' of
type 2 or type 3 corresponding to A’ such that A* « A [Lemma 2-2]
or that there is a simple phrase corresponding to A’ such that
A N A’ # ¢ [Lemma 1-2]. Here, the latter does not hold, since if
s0, then Fo(A') = Fy(A") = 1 dictates that there is a simple phrase
y" corresponding to A” such that A’ « A” in F; and vy is absorbed by
y". Therefore, only the former stands valid. Where, by the assump-
tiony# y',A # A'. Similarly, from ¥'(A") = 1/2, we can show
that there is a product term y" of type 2 or type 3 corresponding to
A" such that A" x A’ in F,. Then, 7y is absorbed by " because
A" « A and A" # A. This is contradictory to the assumption that
F, is a canonical disjunctive form. Therefore, any product term
which exists in F, also exists in F,. From the above, we have
shown that the canonical disjunctive form of F is determined
uniquely. Q.E.D.

The following is an algorithm to obtain the canonical disjunctive
form of any given regular ternary logic function:

1) expand the given logic formula into a disjunctive form (a dis-
junction of product terms), ’

2) expand product terms of type 2’ and type 3’ into the disjunc-
tions of product terms of type 2 and type 3, respectively,

3) based on the absorption law, omit, if any, product terms which
are included by other product terms,

4) the logic formula obtained finally is a canonical disjunc-
tive form.

Example 6: The canonical disjunctive form of the regular ter-

nary logic function of Example 4 is obtained as follows:

F=Xx+ (/2% + (1/2) - x,
=%+ (/2) X xa+ (1/2) X X2+ (1/2) *xy ~ x2
+(1/2) %, - x2
=x + (1/2)-x " x,.

This correspondence has concentrated on the canonical dis-
junctive form, but the canonical conjunctive form can also be treated
in a similar fashion.

VI. CONCLUSION

We have defined regular ternary logic functions as a significant
and useful family of ternary functions and have discussed the funda-
mental properties of these functions. In particular, we have con-
sidered their representations and canonical forms. Recently,
Yamamoto [10] has introduced three-valued majority functions as a
family of significant ternary logic functions. The three-valued ma-
jority functions are a special example of regular ternary logic func-
tions described in this paper.
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